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ABSTRACT 

'This report contains the results of a study on the use of filament wound 

toroids as pneumatic shock absorbers.    Expressions for the specific energy 

absorption under isobaric and adiabatic conditions are derived and compared 

with the performance of competing  systems.     Means for improving stroke 

efficiency are discussed. 

The stiffness properties of a compressed toroid under combined com- 

pression,   bending and shear are derived analytically and compared with 

experimental measurements.    In addition the buckling behaviour of a com- 

pressed stack of toroids is analyzed and compared with test results.    In both 

cases the agreement between analysis and experiment is sufficiently good to 

validate the theory for engineering calculations^/ 



LIST OF SYMBOLS 

a radius of polar circle of toroid 

c   ,   c see Figure 10 
1 La 

E absorbed energy 
a 

El bending stiffness 

E specific energy,   see Eqn.   (1) 
s 

F compressive load 

g acceleration of gravity 

h compressed height of toroid 

h undetected height of toroid 
o 

h   , h see Figure 11 

K ratio of specific heats 

KAG shear stiffness 

I length of column 

m fixity index 

M bending moment 

n number of toroids in stack 

p pressure 

p ambient pressure 

P gage pressure 
g 

p pressure at no load 
o 

r distance from polar axis 

r   , r see Figure 10 

R gas constant 

s distance along meridian 

(SF) safety factor 

T temperature 

Vll 



T hoop tension 

T meridional tension 
m 

u stroke 

u ratio of stroke to undeflected height 

V volume of container,  also shear force 

V volume of container at no load 
o 

V volume of structural material 
s 

w lateral deflection 

W weight 

x distance 

a ratio of non-structural weight to structural weight 

ß angle between fibers and meridional plane 

77 stroke efficiency,   see Eqn.   (ZO) 

€ strain 

€ strain at no load 
o 

<p azimuth angle from load plane 

p density 

X specific strength   see Eqn.   (3) 

a stress 

8 rotation of cover plate,   see Figure 11 

Vlll 



1. INTRODUCTION 

This report contains the results of a study on the use of filament wound 

toroids as pneumatic shock absorbers.     The primary purpose of the study was 

to develop,   and to confirm by careful experiment,   an engineering theory for 

design.    A secondary purpose was to establish performance goals that have a 

reasonable expectation of achievement in future designs and thereby to provide 

a basis for the evaluation of the potential capabilities of toroidal shock ab- 

sorbers. 

The application of flexible pneumatic shock absorbers,   or gas bags, 

as landing gears for reentry capsules and other flight vehicles has been seriously 

proposed and extensively tested.    Reference 1 contains an evaluation of the per- 

formance of gas bags relative to other impact absorbing devices.     The major 

disadvantages of gas bags were considered in Reference 1 to be their inability 

to withstand lateral loads and their tendency to buckle.     The present report 

presents design procedures intended to overcome these difficulties. 

Reference 2 is an excellent study of the gas-dynamic aspects of landing 

impact absorption without,   however,   much consideration of structural design. 

References 3 through 7 present the results of tests with gas-bag impact ab- 

sorbers. 

Examples of the type of impact absorber considered in this report are 

shown in Figure 1.    It consists of a toroidal rubber bladder covered by high 

strength structural filaments.     The load is applied parallel to the polar axis. 

In Figure la the structural fibers carry meridional tension,   while rings on 

the polar circles carry hoop tension.    In Figure lb the structural fibers carry 

both meridional and hoop tension by virtue of their helix angle.    A multiple 

toroid configuration for long strokes is shown in Figure 19. 

The present study is based on earlier analytical studies of filament wound 

pressure vessels reported in References 8,   9 and 10.     The primary concern 



of the earlier work was to establish precise geometrical shapes and winding 

patterns in order to fully exploit the strength of the structural filaments (iso- 

tensoid design).    In the present study geometric shapes are treated less 

rigorously in order to facilitate the analysis of large deformations. 



2. ENERGY DISSIPATING CHARACTERISTICS OF A 
TOROIDAL SHOCK ABSORBER 

The performance of a shock absorber is measured in terms of several 

parameters,   the principal ones being 

• the specific energy,   E  ,   which is the ratio of the energy 
s 

absorbed by the shock absorber to its weight. 

• the stroke efficiency,   7?,   which is the ratio of the absorbed 

energy to the energy that would be absorbed if the force was 

constant and equal to its maximum value over the entire stroke. 

• the deceleration onset rate,   which is the maximum rate of 

change of deceleration,   measured in g's per second. 

The specific energy and stroke efficiency of a toroidal shock absorber 

will be computed for a variety of conditions and compared with other types of 

shock absorbers.    As may be seen from load-stroke curves to be presented, 

the deceleration onset rate of a toroidal shock absorber is inherently low. 

2.1        Specific Energy 

The specific energy of a shock absorber is defined by 

energy absorbed by device ,^> 
s   ~~ weight of device 

The weight of a pneumatic shock absorber includes the weight of the gas, 

the weight of structure used to contain the gas and to resist loads,   and the 

weight of other necessary items that do not,   in themselves,   absorb energy. 

The ideal structural weight (or minimum possible weight) of a filament wound 

pressure vessel has been shown,   Reference 10,   to be 

w™ i =  4^ <SF> (2) 
Ideal A 



where   p   is the pressure of the contained fluid,     V is the volume of the con- 

tainer,   (SF) is the factor of safety,   and   A   is the specific strength of the 

structural filaments,   defined by 

ffult 

CTult is the ultimate stress of the fibers and   pg   is the weight per unit volume. 

A has the dimension of length. 

The weight of other solid,   non-structural items and the inefficiency of 

the structural design can be accounted for by multiplying Eqn.   (2) by a factor 

(1 + a).    The weight of the contained gas can be related to the pressure and 

volume by means of the gas law,   p V = WRT.     The total weight of a pnematic 

shock absorber may therefore be expressed as, 

w  =      (l£V (i + a) (SF) + |X) (4) 

pV in the first term may be replaced by p     V     where p       is the gage pressure 

and   Vo is the volume under no load,   provided that the peak stress in the wall of 

the container occurs under no load.     This is,   fortunately,   true under most con- 

ditions for a filament-wound toroidal pressure vessel,   as will be seen. 

The energy absorbed by a pneumatic shock absorber is stored in the gas 

and also, if the container is strained to a significant degree, in the structural 

material.    An expression for the absorbed energy is 

V e 

Ea   =   -   /    pdV   +   pa (V-VQ) + Vg    f    crder (5) 

o o 

The second term accounts for the work done against an external fluid at 

ambient pressure,   p   .     The third term accounts for the energy stored in the 

volume of structural material,   V  .    Ignoring,   for the moment,   the energy 

stored in the structural material,   the energy absorbed during an isobaric 

(contant pressure) process is 



E      =   p     (V    - V) 
a        *g      o 

so that,   if the volume is compressed to zero,   the specific energy is,   by 

substituting (4) and (6) into (1): 

:6) 

Es   =    "3 
1 

(7) 
X(1+«,(SF) + IZ2   — 

where    p0     =    Pa + Pa>    *s ^e absolute pressure at no load. 
o 

The energy absorbed during an adiabatic process,   again ignoring energy 

absorbed in the structure,   is; 

E     = 
a 

P   v„ o    o 
K-l V 

K-l 

" PaV0       1  - 
V_ 

Vo 
(8) 

where   K   is the ratio of specific heats. 

The volume ratio of a compressed toroid with rigid hoop restraint is re- 

lated to the stroke by 

V_ 
V. 

=    1  -   ü (9) 

where u   is  the ratio of the stroke to the undeflected height of the toroid.     The 

specific energy during an adiabatic process is,   by substituting (4),   (8) and (9) 

into (1): 

E 
Ä [(>-») 

1-K 
-  1 u 

3 
X 'l-^)<l+«><SF>   +   ^T 

(10) 

Examination of Eqns.   (7) and (1 0) reveals that the gas constant K and R 

are significant parameters for a pneumatic shock absorber.     The following 

table gives values for a few gases that have desirable properties; 



GAS CONSTANTS 

K R 

Air 1.4 53.3 

Hydrogen 1.4 766. 8 

Helium 1.66 386. 3 

Argon 1.67 38.7 

Specific energies for a toroidal shock absorber under isobaric and 

adiabatic processes are plotted,   respectively,   in Figures 2 and 3.    In both 

cases it is assumed that the ambient pressure,    pa ,   is negligible.    A struc- 

tural material with realistic specific strength is assumed.    In the case of 

adiabatic compression the stroke is assumed to be 90% of the undeflected 

height because,   as will be shown later,   the meridional fiber stress is ap- 

proximately equal to the unloaded fiber stress at that stroke. 

The advantages of using lighter gases is indicated in both figures.     In 

addition,   the adiabatic process is seen to be considerably more efficient than 

the isobaric process. 

Returning to a consideration of energy stored in the structural material, 

it is evident from Eqn.   (8) that strains large enough to be significant will also 

change the energy stored in the gas by virtue of an increase in enclosed volume. 

The volume ratio for a compressed toroid subjected to strain in the meridional 

fibers is related to stroke,   u ,   by 

V_ (l-ü)+2c(l-ü) 
1 + 2 c (11) 

where €Q is the strain at no load and e is the strain at full compression. 

It may be observed that if the stroke is large and the initial strain is small 

the volume ratio is not significantly affected. 



Figure 4 shows the relationship between strain and specific stress, 

o/pg,   for a structural material that is capable of sizeable energy storage. 

This energy should be included in an evaluation of the potential capability of 

pneumatic shock absorbers. 

Figure 5 shows the results of calculations of specific energy absorption 

by a toroidal shock absorber using Eqn.   (10) and the properties of available 

materials.    In the case of the expendable (Nylon) shock absorber the factor 

of safety was assumed to be 1.0.     The specific energy absorption for compet- 

ing systems,   also shown in Figure 5,   is taken from Reference 1. 

2.2       Fiber Stress 

The meridional tension in a compressed toroid is (see Section 3. 3) 

T       =   p   ■      £ (12> m F 2 

where   h   is the compressed height.     The relationship between meridional 

tension and stroke is,   therefore 

I™     = -E-   (1 _ü) (13) 
Tmo      Po 

where    T is the meridional tension for no load.    For an isobaric process 
m0 

meridional tension decreases linearly with stroke.    For an adiabatic process 

P   -   Po     (^)K 

so that,   using Eqn.   (9) 

T_ 1   - XI 

m o   ■    (l-ü*): 

(15) 

The relationship between hoop tension and stroke is 

Ih_      =     JP_     (1_ü
2

) (16) 
no < 



so that,  for an adiabatic process 

T 
h     = 1  

T 2   K-l (17) 
\ (l-üZ)K1 

The above relationships are plotted in Figure 6 for both isobaric and 

adiabatic processes.    For the isobaric process both components of tension 

decrease uniformly with stroke.    For the adiabatic process the hoop tension 

increases uniformly with stroke while the meridional tension decreases at 

first and then rises to exceed the no-load value at a stroke between 80% and 

90% of full stroke. 

In a meridionally wound toroid,   hoop force is carried by concentrated 

circular rings at the polar circles,   see Figure 1,   while in a helically, 

wound toroid hoop force is carried by the inclined fibers.    In either case, 

the fact that hoop force increases uniformly with stroke in an adiabatic 

process means that additional circumferential reinforcement is required 

for that process. 

2.3      Stroke Efficiency 

In many shock absorber applications,   the stroke as well as the peak 

force is limited by  design   considerations for the configuration as a whole. 

It is furthermore desirable to absorb as much energy as possible within the 

limits on peak force and maximum stroke so that the ideal shape for a load- 

stroke curve is one such that the force rises rapidly (limited by allowable 

onset rate) to its maximum value and remains constant over the remainder 

of the stroke. 

The relationship between force and stroke for a toroidal shock ab- 

sorber is (see Eqn.  25): 

2 _ 
F   =   77      a hQ   p u (18) 

where   a   is the radius of the polar circle and   h      is the undeflected height 
o & 



at the toroid.     Thus the load-stroke curve is linear under isobaric compres- 

sion.    For adiabatic compression 

F   =   7T2ah   p     • "   , __ (19) 
°°        (1-Ü2)K 

Load stroke curves for both processes are plotted in Figure 7.    It is 

evident that the curves depart considerably from the ideal shape,   particularly 

in the case of adiabatic compression. 

Stroke efficiency is defined by the formula 

u 

"   =     F 
  f    F dx (20) 

u J 
max 

o 

which may also be written as 

TI 

„= I   / Fdx (21) 
u 

o 

where   F    = F/F and   x   =   x/h      .    From the form of Eqn.   (21) and also 
max o 

from the form of the load-stroke curve,   it is evident that the stroke efficiency 

for isobaric compression is equal to one-half.    For adiabatic compression the 

stroke efficiency is 

-    -      _1       •       Id   -ü2)-(l   -TI2)K] (22) 

V   "     <K"^ 2Ü2 

Stroke efficiency curves for toroidal shock absorbers are plotted in 

Figure 8.    Stroke efficiency for the adiabatic process can be improved by 

using bleed-off valves to control the shape of the load-stroke curve.    In 

Figure 7,   for example,   the pressure could be permitted to rise adiabatically 

until the stroke attained 60% of the undeflected height.    At this point bleed-off 



valves would be forced to open by the increasing pressure so as to maintain 

the pressure at a constant value.    At the end of the stroke,   the pressure would 

be reduced quickly to a low value in order to prevent rebound of the shock ab- 

sorber. 

Another scheme for improving the stroke efficiency of a toroidal shock 

absorber is shown in Figure 9.     The toroid stack is pre-compressed by means 

of drop cords to provide a rapid onset of force.     The pressure then rises 

adiabatically to a level at which bleed-off valves open and thereafter maintain 

the pressure at a constant value.    A further advantage of the configuration 

shown in Figure 9 is that the meridional fiber stress is near its minimum value 

in the no-load condition (see Figure 6). It is,   therefore,   possible to exploit 

efficiently the energy-storage capability of the structural fibers and to increase 

the specific energy of the shock absorber. 

10 



3.        STIFFNESS PROPERTIES OF A COMPRESSED TOROID 

As its name implies,   a shock absorber is a highly compliant part of 

structural system.    In order to make engineering calculations concerning the 

total response of the system,   the intrinsic relationships between motions at 

the points where the shock absorber attaches to the rest of the system and the 

forces applied to these points should be known.    In the case of a toroidal shock 

absorber,   the important motions are the translations and rotations of planes 

passing through the polar circles of the toroid.    Relationships between these 

motions and applied static forces and  moments will be derived in this section, 

and will be applied in the next section to the computation of the elastic stability 

of a stack of toroids.    In deriving stiffness properties,   it will be assumed that 

the toroid is subjected to large deformation parallel to its polar axis,   but that 

lateral translations and rotations are infinitesimal.    This assumption is reason- 

able since,   in most applications,   the applied axial force is large compared to 

lateral forces and moments.        A further implied assumption,  for the calcula- 

tion of dynamic response,   is that the mass of the toroid may either be neglected 

or be lumped at its points of attachment to the rest of the system. 

3.1       Resistance of a Toroid to Axial Compression 

The axial force on a toroid compressed between parallel plates,   Figure 

10,   is equal to the internal pressure multiplied by the footprint area 

F   =   P7T(r2
2-r1

2) (23) 

Under the assumptions that the fibers are inextensional and without bend- 

ing stiffness and that the deflected height,    h,    is small compared to the diameter 

of the polar circle,    2a,   the toroid deforms into a shape with semicircles at the 

inner and outer meridians such that,   in Figure 10, 

Cl    =    C2    =   I  <ho'h) U4) 

11 



Substitut ing   r    = a-c     and  r    = a + c     into Eqn.   (23),   we obtain 

2 2 
F    =   p 77    a •   (h   — h)    =   p7T    a • u 

o 
(25) 

The spring constant of the compressed toroid is independent of the stroke, 

u,   and is equal to  p77   a. 

3.2       Resistance of a Compressed Toroid to Bending 

The bending stiffness of a compressed toroid will be computed under the 

assumption that,    0,   the angle between the cover plates is infinitesimal,   (see 

Figure 11).    The case of finite rotation is difficult and will not be treated. 

The bending moment is equal to the first moment of the pressure acting 

on the footprint area of the toroid, 

27T      r„ 2TT 

M   =    / f    p r    cos cp d cp dr   = —      /       (r     - r     ) cos cp dcp (26) 

where cp is the azimuth angle to the plane of rotation.    From Figure 11 

77 77 
r      =   a + c    = a+ — (h   - h  ) = a+ — (h   - h+ (a + c   ) 0 cos <p) 

Cd Cd ^t O Cd ^r O Cd 
(27) 

and 

1 

77 77 
a-cn=a- — (h   - h,) = a - — (h   -h + (a-c,) 8 cos m) 

1 4ol 4o 1 ^ 
(28) 

In cubing   r     and  r   ,    only the terms that are linearly proportional to   0 

will be retained.     These terms are 

T    -D   /    3 3\ 377 
L,. P. (r     - r    )    =   — 0 cos cp [2 a   +6a(J)    (h0

_h)' (29) 

Thus,   upon substituting into Eqn.   (26) and performing the integration 

2 
M 
0 

IT2 3 
~T P a 1 +3 

'   \2 /h   -h> 
TT \     /     O 

(30) 

12 



The second term in this result is negligible for slender toroids,   h   « a, 

and for slightly compressed toroids. 

3.3       Resistance to Shear of a Toroid with Meridional Fibers, 
Compressed Between Two Parallel Plates 

Consider a section of a flattened cylindrical tube between parallel plates 

and displace the top plate in the direction of the axis of the tube 

(A) 

(B) 

The curved section of the tube has a radius equal to —.    The tensile force in 

meridional fibers per unit length of tube is • 

h (31) 
m 

The shear force is transmitted by rotation of the fibers out of a meridional 

plane,   i. e. , 

V    =    2 T       sin ß 
m 

(32) 

where  ß  is the angle between the axis of the fiber and a meridional plane.    Now 

from equilibrium considerations the shear force is constant,   independent of 

s ,   the position on the meridian,   so that  ß  is also independent of   s .    The 

motion w  in the direction of the axis is obtained from 

13 



S2 
w   =   J     sin ß ds    =    sinj8(s2-s   ) (33) 

Sl 

If the portions of the fiber in contact with the cover plates do not slip 

relative to the cover plates,   then   s    - s     is equal to the length of the curved 

portion of the meridian and 

w   =    sin ß • — •  h (34) 

If,   on the other hand,   the fiber slips freely such that the shear force is reacted 

only at points   (A)   and  (B)   in the plane of symmetry,  then   s    - s     is equal to 

the total length between these points and 

w   =    sin ß • - •   h (35) 
CO 

where h     is the uncompressed height of the toroid. 
o ° 

The relationship between shear force and displacement is,   for the case 

of no slip, 

V   =   2 T sin &   =    z(B-±±).   ^    =   £   pw (36) 
\     2     /       7T   h 77 v      ' 

while for the case of free slip 

v = *p*(v w (37) 

In order to apply these results to a toroid they must be integrated over 

the circumference of the polar circle.     The integration factor is 

2ff 
J    sin    <p •   a •   d<p   =   a •   7T (38) 
0 

where  a  is the radius of the polar circle of the toroid and co  is the azimuth 

angle from the direction of the applied shear force.    Thus,   the relationship 

14 



between shear force and lateral translation for the complete toroid is,   for the 

case of no slip 

V =   2 ap •  w (39) 

while for the case of free slip 

V =   Zapf   w (40) 
h 

o 

It must be pointed out that the above results are not directly related to 

the shear stiffness in the ordinary sense of beam theory.    They refer only to 

the condition where the top and bottom plates are held rigidly parallel by some 

external means and are compressed together by an external force.    The sig- 

nificance of these statements is examined in Section 4. 

3.4       Summary of Results 

The stiffness relationships that have been derived for a meridionally 

wound toroid are summarized as follows: 

Axial compression 

F/u   =   IT2 ap (41) 

Bending 

M *       3 
T = Ta  p 1 +3 (!) (:)' 

(42) 

Shear with parallel cover plates,   (9 = 0) 

—   =    2 ap,    for no slip (43) 
w 

2 ap (l -r~) for free slip (44) —   =    £ ap i± - 
w \       n 

o 

In all cases stiffness is directly proportional to internal pressure.    The 

primary geometric parameter controlling stiffness is the radius of the polar 

circle,   while the uncompressed height of the toroid,   h   ,   and the stroke,    u, 

enter to a lesser extent. 

15 



4.        BUCKLING OF TOROID STACKS 

The susceptibility of most gas bags to elastic instability is one of their 

more objectionable features when considered as impact absorbing devices. 

The toroidal container is an exception,   inasmuch as it shows relatively good 

resistance to buckling.    An approximate theoretical analysis of the buckling 

of toroid stacks follows.     Confirming experiments are described in Section 5. 

The buckling of a stack of filament-wound toroids under concentrated 

end loads is similar to the Euler buckling of a continuous column except that 

1. Shear compliance may be relatively more significant and cannot 

be ignored. 

2. If the number of toroids in the stack is small,   treatment of the 

stack as a continuous column may lead to significant error.    This 

is the reverse of the error introduced by using finite difference 

methods to treat a continuous system. 

In calculating its buckling load, the stack of toroids will be treated as 

a continous column, making due allowance for the above differences. Shear 

compliance will be considered first. 

The resistance to lateral load of a meridionally-wound toroid placed 

between parallel plates is given by Eqns.   (43) and (44).    If,   instead of lying 

in meridional planes,   the fibers form a double helical wrap with an average 

angle  S     between the fibers and meridional planes (see Figure lb),   it may be 

shown (Ref.   11) that the resistance to lateral force is given by 

V d2 

w = *a • E • —r sin ßocos 8o (45) 
o     f 

where,   in addition to previously defined symbols, 

E    =    Young's modulus of fibers 

d     =   fiber diameter 

Lr   =   distance between fiber intersections 

16 



In view of the very large ratio of  E to  p  in practical applications,   the 

resistance of a helically-wound toroid to lateral force will be considered to 

be infinite compared to its resistance to bending. 

The values obtained from Eqns.   (43),   (44) and (45) for  V/w  should not 

be identified directly with shear stiffness.    They refer rather to the case of 

a toroid between plates that are kept parallel by external constraints,   as de- 

picted below 

Top plate restrained 
from rotating 

Since we are interested in deriving the equivalent beam properties of a 

toroid,   the results for this configuration should be compared with correspond- 

ing results for a column with ends restrained from rotation.    For this purpose, 

resolve the applied load into a component directed toward the center of the base 

of the column and a component parallel to the top surface.    The first compon- 

ent has negligible effect for a differentially short column.    The net lateral 

force on the top plate is,   for small motions 

V      =   V+F•— 
o h 

The lateral deflection of the equivalent column with parallel ends is 

3 

(46) 

w   =   V _h    , J_   hi 
KAG      12   El 

(47) 

17 



1 1 h2    1 
12 El KAG 

^+F 
. w 

The equivalent shear stiffness,   obtained by combining Eqns.   (4) and (5) 

is 

(48) 

V 
— is given by Eqns.   (43),   (44),   or (45).    The bending stiffness,   M/0,    of a 

toroid is derived in Section 3. 2.    For slender toroids in general,   or for any 

toroid that is only slightly compressed, 

2 
„T Mh IT 3 n 
El   =   —   =   — p a    h (49) 

The bending stiffness of fat,   highly compressed toroids is somewhat 

larger.     Eqn.   (49) will be used in subsequent work. 

The bending load of an Euler column including the effect of shear flexi- 

bility is 

F    = 2  (5°) 

KAG      VmW El 

where  I   is the length of the column and m  is the fixity index.    The length of 

the column,   I ,   is equal to  nh where  n is the number of toroids in the stack. 

For common end conditions 

m   =    1    for a cantilever column 

m   =   2   for a simply-supported column 

m   =   4   for a column with built-in ends. 

The analysis has been carried out for the conditions to which Eqns.   (43) 

and (44) apply and also to the condition for which 77 = 0 ,   which approximates 

the helically wound toroid.    In the analysis,   use is made of the relationship 

between the compressive load,   F,    and the axial deflection,   u,    of a single 

toroid,   derived in the preceding section 

2 
F   =   p •  a .  7T    •  u (51) 
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Examination of the preceding equations reveals that  F,    KAG,    and El 

are all directly proportional to the internal pressure,    p.    Thus,   pressure is 

eliminated as a parameter in the buckling criterion,   Eqn.   (50),   and it may be 

concluded that a given toroid stack will buckle at some deflected height,   re- 

gardless of the internal pressure.    Eqn.   (50) may be used to obtain a relation- 

ship between the deflection and the physical parameters that describe the stack 

of toroids.    The general form of the relationship obtained by substituting Eqns. 

(48),   (49) and (51) into Eqn.   (50) is 

2 h 

Vmir/ 12 
=   f (u) (52) 

w 
where,   for a helically-wound toroid with rr = 0 

f(ü) ü(l-ü) 

for a meridionally-wound toroid with no slip between contacting fibers: 

(53) 

f(ü)    = 
1 

1 -ü 
(54) 

while,   for a meridionally-wound toroid with free slip between contacting fibers 

f(ü) 
1 -u 

1_ 
ü 

1 

ü + ^(l-ü)2 

77 

(55) 

The above results are plotted in Figure 12.    As mentioned earlier,   re- 

verse finite difference error can be expected due to the application of a con- 

tinuum formula (Eqn.   (50)) to a lumped structure.    If— ^ 1,   then I——J     = 

.405 (—)    should be replaced by(ö)pr in Eqn.   (52).    The error in Eqn.   (52) 

is small for larger values of n/m. 

The results shown in Figure 12 may be put into a more convenient form 

by noting that   nh   /2a  is the aspect ratio,(i. e. ,   the ratio of total height to polar 
O ,     T .? 

diameter) of the unloaded stack.    Neglecting the term   1/12 compared tol )   , 
V mTT / 
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the result shown in Figure 13 is obtained for a simply-supported stack.    For a 

stack with fixed ends,   the aspect ratio should be doubled,   while for a cantilever 

stack,   it must be halved. 

Figure 13 shows that,   from a design viewpoint,   the critical buckling pa- 

rameters of a stack of toroids are the aspect ratio of the unloaded stack and 

the stroke.    It is of interest to observe that the permissible aspect ratio of a 

helically-wound toroid stack does not decrease with increasing stroke,   if the 

stroke exceeds one-half of the undeflected height.    In addition,  toroid stacks 

with meridionally-wound fibers have a much lower permissible aspect ratio 

due to their substantial shear compliance. 

The manner by which the experimental points plotted in Figures 12 and 13 

were obtained  is    discussed in the next section. 
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5. EXPERIMENTAL PROGRAM 

An experimental program was undertaken to substantiate theoretical pre- 

dictions of stiffness and buckling behavior.    The configuration employed in 

stiffness tests is shown in Figure  la.      It consists of an automotive innertube 

covered by a meridional wrap of Dacron fibers.    Two fiberglass hoops are 

located at the polar circles.    The meridional fibers are embedded in a knitted 

mesh of lightweight fibers (barely visible in the photograph) to keep them from 

slipping.    Dimensional properties of the specimen are as follows: 

Polar diameter: 12" 

Cross-sectional diameter: 4. 6" 

Filamentary material: 80 lb.   Dacron,   twisted 

Total number of fibers: inner half 242 
outer half 425 

Total weight,   including innertube: 1.4 lb 

Ultimate pressure (designed): 300 psi . 

The toroid was subjected to pure compression,   combined compression 

and bending,   and combined compression and shear tests.    The test apparatus 

for the combined compression and bending test is shown in Figure 14.    The 

compressed height of the center of the toroid was adjusted to the desired value 

by means of turnbuckles.    Bending moment was provided by means of an ec- 

centric weight. 

A sketch of the test apparatus for the combined compression and shear 

test is shown in Figure 15.    In this case,  the cables and turnbuckles are used 

to prevent rotation of the cover plate as well as to enforce the desired com- 

pressed height.    Thus,   the results of theoretical analysis (Eqns.   (43) and (44)) 

apply directly to the test condition. 

Typical comparisons of test results with theoretical stiffness predictions 

are shown in Figures 16,   17 and 18.    In all cases,   but particularly in the 
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combined compression and shear tests,   hysteresis due to fiber slippage and 

other frictional effects is evident.   Nevertheless,   the agreement is sufficiently 

good to validate the theory for design calculations. 

The configuration employed in buckling tests is shown in Figure 19.    It 

consists of a stack of four toroids,   each of which is substantially identical to 

the one used in stiffness tests.    The meridional fibers of adjacent toroids are 

interwoven around fiberglass hoops to provide structural continuity. 

Results for a cantilever test are shown in Figure 21,   where the reciprocal 

of the angular rotation of the top plate is plotted against stroke.    Due to un- 

avoidable misalignments and non-linear effects,   the angular rotation does not 

indicate an especially sharp increase in the neighborhood of the theoretical 

buckling height.     Nevertheless,   an extrapolation to zero of the (nearly) linear 

portion of the plot of   1/A9  vs stroke gives a very good comparison with theory. 

Results obtained for a simply-supported test are shown in Figure 22. 

The simply-supported condition was simulated by tying the mid-points of the 

cover plates together with a stranded steel cable.    These experimental re- 

sults also indicate a rather gradual collapse of the toroid stack,   but extrapola- 

tion of   1/A6  gives reasonably good agreement with theory. 

In a third set of tests,   the buckling limit with fixed ends was determined. 

The onset of buckling with deflection was rather gradual with the development 

of large lateral deflections near 50% stroke.    A photograph of the buckled stack 

is shown in Figure 20. 

Experimentally determined points are plotted for comparison with theory 

in Figures 12 and 13.     The agreement is sufficiently good to validate the theory 

for design calculations.    The experimental value for the toroid stack with fixed 

ends (bottom point in Figure 12) indicates that it is best to assume that fibers 

placed in contact by compression slip freely. 
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CONCLUSIONS 

The conclusions of the present study may be summarized as follows: 

1. The specific energy absorption o£ a pneumatic shock absorber, 

employing an adiabatically-compressed gas,   is potentially quite 

large compared to competing systems,  as shown by Figures 2 and  3 

The specific energy absorption can be substantially increased 

by exploiting the stretch capability of highly ductile fibers,   such 

as Nylon. 

2. Light gases, particularly helium, should be used in pneumatic 

shock absorbers because they increase specific energy absorption 

without penalty. 

3. There is a need to develop designs that improve the stroke 

efficiency of toroidal shock absorbers without severely penalizing 

specific energy absorption; see Figures 7 and 8. 

4. Deflections due to lateral load can be accurately predicted by 

the theory presented   in this report; see Figures 16,   17 and 18. 

5. The onset of buckling can be adequately predicted by the theory 

presented in this report; see Figures 12 and 13.    The primary pa- 

rameters influencing buckling are the aspect ratio of the toroidal 

stack and the shear flexibility.    In applications where buckling is 

critical,   helical rather than meridional fiber patterns should be 

used in order to reduce shear flexibility. 
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(a)   Toroid With Meridional Fibers 

(b)   Toroid With Helical Fibers 

Figure 1   Filament-Wound Toroids 
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Figure 6    Fiber Tension vs Stroke 
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Figure 14    Meridionally Wound Toroid Under 
Compression and Bending 
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Figure 16    Pure-Compression Test Results 
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Figure 19    Toroid Stack Before Compression 

Figure 20    Toroid Stack After Compression 
Ends Fixed 
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